____, ID ____

Math for Architects MTH 111 Summer 2012, 1–4

MTH 111, Math for the Architects, Exam Two

Ayman Badawi

QUESTION 1. (20 points) Find dy/dx and do not simplify.

.

(i)
$$y = ln\left(\frac{(3x+2)^5}{(x^2+4x-3)^7}\right)$$

.

(ii)
$$y = e^{(3x+x^2)} + ln(3x+7) - \frac{3}{x}$$

(iii)
$$y = (3x + \sqrt{2x + 1} + 7)^6$$

(iv)
$$y = (5x+1)e^{(5x+1)}$$

(v)
$$y = \frac{3x+7}{x^2-x+2}$$

QUESTION 2. (10 points) Find the equation of the tangent line to the ellipse $x^2 + 2y^2 + 4y - 70 = 0$ at the point (8,1)

QUESTION 3. (10 points) Given y = 4 and x = 4 are tangent lines to the ellipse $\frac{(x-1)^2}{F^2} + \frac{(y-2)^2}{D^2} = 1$

1. Find F^2 and D^2 .

QUESTION 4. (10 points) Given y = -7x + 1 is a tangent line to the curve $f(x) = ax^3 - x + b$ at the point (1, -6) (hence note that (1, -6) lies on the graph of f(x)). Find a and b.

QUESTION 5. (15 points) Let
$$f(x) = 2x - ln(4x + 10)$$
 where $x > -2.5$

a) Find all local min. points and all local max. points on the interval $(-2.5, \infty)$. [Recall $a - \frac{b}{c} = \frac{ac-b}{c}$ and a fraction is equal to 0 iff the numerator = 0 and denominator not equal 0]

b) Find the intervals where f(x) is increasing and decreasing where x > -2.5.

c) Use f'(x) only to sketch a rough graph of f(x).

QUESTION 6. (10 points) Find the absolute maximum value and the absolute minimum value for $f(x) = 3x^3 - 24x + 10$ on the interval [-1, 3]

QUESTION 7. (i) (4 points) $Lim_{x \to 8} \frac{\sqrt[3]{x} + x - 10}{2x - 16}$

(ii) (4 points)
$$Lim_{x \to 2} \frac{e^{(x-2)} + 3x-7}{x^2 - 4 + \ln(x-1)}$$

(iii) (4 points)
$$Lim_{x \rightarrow 0} \quad \frac{x^2 + x + 3}{e^x + x + 5}$$

QUESTION 8. (5 points). Find dy/dx where $xe^{y} + y^{2}ln(x+1) - xy + 100 = 0$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com